发布时间:2025-02-02 22:56:19
2008年7月末,我们曾在一篇名为“KERS系统深度分析 80马力的学问”的文章中,对将在本赛季引入的KERS技术做了前期报道。文章从KERS的概念出发,重点对两种技术方案的KERS的原理,以及其优缺点进行了系统的对比分析。
如今,随着新赛季的临近,各队的09款赛车将从本月起陆续发布,KERS变得越来越受关注。因此我们决定结合最新的动态,对该系统做进一步的跟进报道。
在下面的这篇文章中,我们将重点介绍威廉姆斯车队采用的第三种技术方案的KERS系统——电驱飞轮。与此同时,还将对普遍关心的、法拉利的KERS供应商——Magneti Marelli的产品做简略报道。另外有关KERS系统的几种安装方式,我们亦将在本文中提到。下面,进入第一部分:威廉姆斯的电驱KERS系统。
一,威廉姆斯的方案
A,研发背景
我们知道,威廉姆斯是独立车队中,唯一一支自行研发KERS系统的车队。这主要是因为他们收购了一个这方面的行家里手。
2008年4月份,威廉姆斯收购Automotive Hybrid Power,成立了一个专门从事KERS研发的公司——威廉姆斯混合动力有限公司。Automotive Hybrid Power的核心业务是研究用于能量恢复系统的高能量飞轮,而这正是威廉姆斯研发F1 KERS所需要重要技术。
Automotive Hybrid Power在被收购后,公司由原来的所在地诺维奇搬到了车队位于牛津的总部外。由伊朗-弗利(Ian Foley)出任新公司的常务董事。需要特别说明的是,威廉姆斯混合动力有限公司并不单纯从事本车队用于F1的KERS系统的研发。
B,方案概述
关于威廉姆斯的电驱飞轮KERS系统,很多人都知道他和Flybrid Systems LLP的方案不一样(注:后者的方案我们已在前一篇技术报道中做了详细的介绍,在此就不再赘述),但是关于其技术原理却并不清楚,下文我们将对此作重点介绍。
威廉姆斯的电驱飞轮KERS,事实上从严格意义上讲,它依旧属于电池-电机这个范畴,只是在其系统中,电池的部分被电力驱动的飞轮所取代了。说的更明白点:就是用飞轮取代了电池作为能量的存储设备。这并非一个新生事物,它就是我们常说的“飞轮电池”。因此我们也可以将其称之为飞轮电池KERS。
C,工作原理
使用飞轮蓄能,是对当前化学电池的否定。在前一篇关于KERS的技术专稿中,我们指出人类当前在化学电池研究上遇到的技术瓶颈。知道现在即便是最先进的锂电池,其能量密度和功率密度低也是相对较低的,而且系统管理复杂,对温度敏感,自重大。正是因为电池的这些缺陷,催生了电驱飞轮蓄能技术在社会界的应用,而这也正是威廉姆斯选择电驱飞轮方案的原因。
威廉姆斯的飞轮蓄能并不同于Flybrid Systems LLP采用动能-势能-动能之间的转化来实现,它的转化过程是:电能-机械能-电能。
如图,这是威廉姆斯的电驱飞轮剖面图。蓝色部分是高强度的陶瓷轴承(注:关于轴承的材质是可选的,由系统的额定转速决定),黄色部分是定子,红紫色部分是采用MLC技术(注:下文会讲到)制造的复合飞轮,外层的红色部分是碳纤维。
电驱飞轮(飞轮电池)的结构,可以简单的视作将一台普通的永磁发发电机/电动机放在一个飞轮当中。其工作原理,即蓄能和释放能量是这样来实现的:
当赛车在入弯制动的过程中,后轴驱动安装在尾部发电机(这是一台可在发电机和电动机之间相互切换的无刷电机)旋转,发电后将电输入飞轮内部的电机,接着电机驱动处在真空中的飞轮旋转,将电能转化为机械能(相当于化学电池的充电过程)。
当赛车通过弯心、全油门出弯时,飞轮内部的电机立即切换到发电机模式,飞轮带动发电机旋转,将存储的机械能通过电能的形式,把能量反向输送给尾部的电机(相当于电池的放电过程)。此时,尾部电机立即切换到电动机状态,电能驱动电动机旋转,其输出的动力与V8引擎的动力汇聚后,传递给后轴。这便是是威廉姆斯的电驱飞轮KERS的整个工作过程。
D,技术优势
采用电驱飞轮蓄能,相较于传统的机械飞轮蓄能以及化学电池蓄能,有几个非常重要的优势:
第一,电驱飞轮不需要使用无极变速箱来实现能量向飞轮的输入输出,对降低系统质量有重大意义;
第二,向飞轮的能量输入和输入是通过电流的形式来实现的,因此系统不需要面对机械传输那样的密封问题
第三,电驱飞轮KERS系统,事实就是用飞轮取代电池的电池-电机KERS系统,因此他拥有和后者一样的优点——系统集成度低,飞轮电池的安装位置几乎不受限制,这对于赛车配重是非常有利的。而机械飞轮KERS由于集成度高,因此配重是个问题。当然机械飞轮KERS本身自重是相对较低的。