装修问答
您所在的位置是:首页 >> >> 装修问答
装修问答
您所在的位置是:首页 >>装修问答

装修问答

苯为什么由苯基和氢原子组成却不叫己苯呢

发布时间:2025-01-31 05:01:22

苯具有的苯环结构导致它有特殊的芳香性。

  苯环是最简单的芳环,由六个碳原子构成一个六元环,每个碳原子接一个基团,苯的6个基团都是氢原子。

  但实验表明,苯不能使溴水或酸性KMnO4褪色,这说明苯中没有碳碳双键。进来研究证明,苯环主链上的碳原子之间并不是由以往所认识的单键和双键排列(凯库勒提出),每两个碳原子之间的键均相同,是由一个既非双键也非单键的键连接(叫大π键)。(可理解为平均化的价键,介于单键与双键之间,兼具二者性质,既可以取代,又可以加成)

  苯分子里6个碳原子都以sp2杂化方式分别与两个碳原子形成σ键、与一个氢原子形成碳氢σ键。由于碳原子是sp2杂化,所以键角是120°,并且6个碳原子和6个氢原子都在同一平面内。另外苯环上6个碳原子各有一个未参加杂化的2p 轨道,他们垂直于环的平面,相互重叠形成大π键。每个碳碳键的键长相等,其数值介于碳碳单键和碳碳双键之间。由于大π键的存在,使苯的结构稳定,难于发生加成和氧化反应,易于发生取代反应。

价键观点

  碳数为4n+2(n是正整数,苯即n=1),且具有单、双键交替排列结构的环烯烃称为轮烯(annulene),苯是一种轮烯。苯分子是平面分子,12个原子处于同一平面上,6个碳和6个氢是均等的,C-H键长为1.08Α,C-C键长为1.40Α,此数值介于单双键长之间。分子中所有键角均为120°,碳原子都采取sp2杂化。每个碳原子还剩余一个p轨道垂直于分子平面,每个轨道上有一个电子。6个轨道重叠形成离域大π键,莱纳斯·鲍林提出的共振杂化理论认为,苯拥有共振杂化体是苯环非常稳定的原因,也直接导致了苯环的芳香性。

分子轨道模型

  从分子轨道理论来看,可以认为苯的6个p轨道相互作用形成6个π分子轨道,其中ψ1.ψ2.ψ3是能量较低的成键轨道,ψ4.ψ5.ψ6是能量较高的反键轨道。ψ2.ψ3和ψ4.ψ5是两对简并轨道。基态时苯的电子云分布是三个成键轨道叠加的结果,故电子云均匀分布于苯环上下及环原子上,形成闭合的电子云。它是苯分子在磁场中产生环电流的根源。

芳香族化合物

  含有一个或几个苯环的有机物叫芳香族化合物。如硝基苯、溴苯

  芳香烃

  含有一个或多个苯环的碳氢化合物。如苯乙烯

  苯的同系物

  只含有一个苯环且苯环侧链上所连接的取代基为饱和烷烃基。其通式为CnH2n-6(n大于等于6)

  其关系为: 苯的同系物⊊芳香烃⊊芳香族化合物

编辑本段

苯的结构和表达

苯的结构

  近代物理方法证明:苯分子的六个碳原子和六个氢原子都在一个平面内,因此它是一个平面分子,六个碳原子组成一个正六边形,碳碳键长是均等的,约为140pm,介于单键和双键之间。碳氢键键长为108pm,所有的键角都为120°。

苯的芳香性

  从结构上看,苯具有平面的环状结构,键长完全平均化,碳氢比为1。从性质上看,苯具有特殊的稳定性:环己烯的氢化热ΔH=-120KJ/mol,1,3-环己二烯的氢化热ΔH=-232KJ/mol(由于其共轭双键增加了其稳定性)。而苯的氢化热ΔH=-208KJ/mol。1,3-环己二烯失去两个氢变成苯时,不但不吸热,反而放出少量的热量。这说明:苯比相应的环己三烯类要稳定得多,从1,3-环己二烯变成苯时,分子结构已发生了根本的变化,并导致了一个稳定体系的形成。

  苯难于氧化和加成,而易于发生亲电取代反应,与普通烯烃的性质有明显的区别。

  苯还具有特殊的光谱特征。苯环上的氢处于核磁共振的低场。

  上述特点说明了苯具有典型的芳香特征。

苯的表达

  怎样来表达苯的结构?自1825年英国物理学家和化学家Farady M(法拉第)首先从照明气中分离出苯后,人们一直在探索苯结构的表达式。科学家们提出了各种有关苯结构式的假设;其中比较有代表性的苯的结构式有:

  

凯库勒式(凯库勒1865年提出) 双环结构式(杜瓦1866-1867年提出) 棱形结构式(拉敦保格1869年提出)

向心结构式(阿姆斯特朗1887-1888年提出) 对位键结构式(克劳斯1888年提出) 余价结构式(悌勒1899年提出)

关于苯的结构及它的表达方式已经讨论了140多年了,虽然提出了各种看法,但还没有得到满意的结果,需要作近一步讨论。

联苯的结构

  最简单的联苯是二联苯。在二联苯中,每个苯环都保持了苯的结构特性。连接两个苯环之间的单键可以自由旋转,但当二联苯的四个邻位氢原子都被相当大的基团取代时,单键的旋转将会受到阻碍,并产生出一对光活性异构体。

编辑本段

物化性质

物理性质

  苯的沸点为80.1℃,熔点为5.5℃,在常温下是一种无色、味甜、有芳香气味的透明液体,易挥发。苯比水密度低,密度为0.88g/ml,但其分子质量比水轻。苯难溶于水,1升水中最多溶解1.7g苯;但苯是一种良好的有机溶剂,溶解有机分子和一些非极性的无机分子的能力很强,除甘油,乙二醇等多元醇外能与大多数有机溶剂混溶.除碘和硫稍溶解外,无机物在苯中不溶解.苯对金属无腐蚀性。

  苯能与水生成恒沸物,沸点为69.25℃,含苯91.2%。因此,在有水生成的反应中常加苯蒸馏,以将水带出。

  在10-1500mmHg之间的饱和蒸气压可以根据安托万方程计算

  lgP = A - P/(C + t)

  参数:A = 6.91210,B = 1214.645,C = 221.205

  其中,P 单位为 mmHg,t 单位为 ℃。

化学性质

  苯参加的化学反应大致有3种:一种是其他基团和苯环上的氢原子之间发生的取代反应;一种是发生在苯环上的加成反应(注:苯环无碳碳双键,而是一种介于单键与双键的独特的键);一种是普遍的燃烧(氧化反应)(不能使酸性高锰酸钾褪色)。

取代反应

  主条目:取代反应、亲电芳香取代反应

  苯环上的氢原子在一定条件下可以被卤素、硝基、磺酸基、烃基等取代,生成相应的衍生物。由于取代基的不同以及氢原子位置的不同、数量不同,可以生成不同数量和结构的同分异构体。

  苯环的电子云密度较大,所以发生在苯环上的取代反应大都是亲电取代反应。亲电取代反应是芳环有代表性的反应。苯的取代物在进行亲电取代时,第二个取代基的位置与原先取代基的种类有关。

卤代反应

  苯的卤代反应的通式可以写成:

  PhH+X2—催化剂(FeBr3/Fe)→PhX+HX

  反应过程中,卤素分子在苯和催化剂的共同作用下异裂,X+进攻苯环,X-与催化剂结合。

  以溴为例,将液溴与苯混合,溴溶于苯中,形成红褐色液体,不发生反应,当加入铁屑后,在生成的三溴化铁的催化作用下,溴与苯发生反应,混合物呈微沸状,反应放热有红棕色的溴蒸汽产生,冷凝后的气体遇空气出现白雾(HBr)。催化历程:

  FeBr3+Br-——→FeBr4

  PhH+Br+FeBr4-——→PhBr+FeBr3+HBr

  反应后的混合物倒入冷水中,有红褐色油状液团(溶有溴)沉于水底,用稀碱液洗涤后得无色液体溴苯。

  在工业上,卤代苯中以氯和溴的取代物最为重要。

硝化反应

  苯和硝酸在浓硫酸作催化剂的条件下可生成硝基苯

  PhH+HO-NO2-----H2SO4(浓)△---→PhNO2+H2O

  硝化反应是一个强烈的放热反应,很容易生成一取代物,但是进一步反应速度较慢。其中,浓硫酸做催化剂,加热至50~60摄氏度时反应,若加热至70~80摄氏度时苯将与硫酸发生磺化反应,因此一般用水浴加热法进行控温。苯环上连有一个硝基后,该硝基对苯的进一步硝化有抑制作用,硝基为钝化基团。

  磺化反应 用浓硫酸或者发烟硫酸在较高(70~80摄氏度)温度下可以将苯磺化成苯磺酸。

  PhH+HO-SO3H------△--→PhSO3H+H2O

  苯环上引入一个磺酸基后反应能力下降,不易进一步磺化,需要更高的温度才能引入第二、第三个磺酸基。这说明硝基、磺酸基都是钝化基团,即妨碍再次亲电取代进行的基团。

傅-克反应

  在AlCl3催化下,苯也可以和醇、烯烃和卤代烃反应,苯环上的氢原子被烷基取代生成烷基苯。这种反应称为烷基化反应,又称为傅-克烷基化反应。例如与乙烯烷基化生成乙苯

  PhH+CH2=CH2----AlCl3---→Ph-CH2CH3

  在反应过程中,R基可能会发生重排:如1-氯丙烷与苯反应生成异丙苯,这是由于自由基总是趋向稳定的构型。

  在强硫酸催化下,苯与酰卤化物或者羧酸酐反应,苯环上的氢原子被酰基取代生成酰基苯。反应条件类似烷基化反应,称为傅-克酰基化反应。例如乙酰氯的反应:

  Ph + CH3COCl ——AlCl3—→PhCOCl3

加成反应

  主条目:加成反应

  苯环虽然很稳定,但是在一定条件下也能够发生双键的加成反应。通常经过催化加氢,镍作催化剂,苯可以生成环己烷。但反应极难。

  此外由苯生成六氯环己烷(六六六)的反应可以在紫外线照射的条件下,由苯和氯气加成而得。该反应属于苯和自由基的加成反应。

氧化反应

  燃烧

  苯和其他的烃一样,都能燃烧。当氧气充足时,产物为二氧化碳和水。但在空气中燃烧时,火焰明亮并有浓黑烟。这是由于苯中碳的质量分数较大。

  2C6H6+15O2——点燃—→12CO2+6H2O

  苯本身不能和酸性KMnO4溶液反应,但在苯环连有直接连着H的C后,可以使酸性KMnO4溶液褪色。

臭氧化反应

  苯在特定情况下也可被臭氧氧化,产物是乙二醛。这个反应可以看作是苯的离域电子定域后生成的环状多烯烃发生的臭氧化反应。

  在一般条件下,苯不能被强氧化剂所氧化。但是在氧化钼等催化剂存在下,与空气中的氧反应,苯可以选择性的氧化成顺丁烯二酸酐。这是屈指可数的几种能破坏苯的六元碳环系的反应之一。(马来酸酐是五元杂环。)

  这是一个强烈的放热反应。

其他

  苯在高温下,用铁、铜、镍做催化剂,可以发生缩合反应生成联苯。和甲醛及次氯酸在氯化锌存在下可生成氯甲基苯。和乙基钠等烷基金属化物反应可生成苯基金属化物。在四氢呋喃、氯苯或溴苯中和镁反应可生成苯基格氏试剂。

  苯不会与高锰酸钾反应褪色,与溴水混合只会发生萃取,而苯及其衍生物中,只有在苯环侧链上的取代基中与苯环相连的碳原子与氢相连的情况下才可以使高锰酸钾褪色(本质是氧化反应),这一条同样适用于芳香烃(取代基上如果有不饱和键则一定可以与高锰酸钾反应使之褪色)。这里要注意1:是仅当取代基上与苯环相连的碳原子;2:这个碳原子要与氢原子相连(成键)。

  至于溴水,苯及苯的衍生物以及饱和芳香烃只能发生萃取(条件是取代基上没有不饱和键,不然依然会发生加成反应)。

光照异构化

  苯在强烈光照的条件下可以转化为杜瓦苯(Dewar苯): 杜瓦苯的性质十分活泼(苯本身是稳定的芳香状态,能量很低,而变成杜瓦苯则需要大量光能,所以杜瓦苯能量很高,不稳定)。

  在激光作用下,则可转化成更活泼的棱晶烷: 棱晶烷呈现立体状态,导致碳原子sp3杂化轨道形成的π键间有较大的互斥作用,所以更加不稳定。

本站热点

热点tag标签